Gephebase Gene

Svb/ovo (https://www.gephebase.org/search-criteria?/and+Gene

Gephebase=^Svb/ovo^#gephebase-summary-title)

Published

GP00001085

Main curator

Entry Status Courtier

PHENOTYPIC CHANGE

Trait Category

Morphology (https://www.gephebase.org/search-criteria?/and+Trait Category=^Morphology^#gephebase-summary-title)

Trait

Trichome pattern (larva) (https://www.gephebase.org/search-criteria?/and+Trait=^Trichome pattern (larva)^#gephebase-summary-title)

Trait State in Taxon A

Drosophila simulans; D. mauritiana: more trichomes

Trait State in Taxon B

Drosophila sechellia: fewer trichomes

Ancestral State

Taxon A

Taxonomic Status

Interspecific (https://www.gephebase.org/search-criteria?/and+Taxonomic Status=^Interspecific^#gephebase-summary-title)

Taxon A #1

Latin Name

Drosophila simulans

 $(https://www.gephebase.org/search-criteria?/and+Taxon\ and\ Synonyms=^Drosophila$ simulans^#gephebase-summary-title)

Common Name

Synonyms

Rank

species

Lineage

cellular organisms; Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Protostomia; Ecdysozoa; Panarthropoda; Arthropoda; Mandibulata; Pancrustacea; Hexapoda; Insecta; Dicondylia; Pterygota; Neoptera; Holometabola; Diptera; $Brachycera; \ Muscomorpha; \ Eremoneura; \ Cyclorrhapha; \ Schizophora; \ Acalyptratae;$ Ephydroidea; Drosophilidae; Drosophilinae; Drosophilini; Drosophila; Sophophora; melanogaster group; melanogaster subgroup

Parent

melanogaster subgroup () - (Rank: species subgroup)

(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id= 32351)

NCBI Taxonomy ID

(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id= 7240)

is Taxon A an Infraspecies?

Nο

Taxon A #2

Latin Name

Drosophila mauritiana

 $(https://www.gephebase.org/search-criteria?/and+Taxon\ and\ Synonyms=^Drosophila$ mauritiana^#gephebase-summary-title)

Common Name

Synonyms

species

Lineage

Rank

cellular organisms; Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Protostomia; Ecdysozoa; Panarthropoda; Arthropoda; Mandibulata; Pancrustacea; Hexapoda; Insecta; Dicondylia; Pterygota; Neoptera; Holometabola; Diptera; Brachycera; Muscomorpha; Eremoneura; Cyclorrhapha; Schizophora; Acalyptratae; Ephydroidea; Drosophilidae; Drosophilinae; Drosophilini; Drosophila; Sophophora; melanogaster group; melanogaster subgroup

Parent

Taxon B

Latin Name

GephelD

Drosophila sechellia

(https://www.gephebase.org/search-criteria?/and+Taxon and Synonyms=^Drosophila sechellia^#gephebase-summary-title)

Common Name

Synonyms

Drosophila sechellia Tsacas and Bachli, 1981

Rank

Lineage

species

cellular organisms; Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Protostomia; Ecdysozoa; Panarthropoda; Arthropoda; Mandibulata; Pancrustacea; Hexapoda; Insecta; Dicondylia; Pterygota; Neoptera; Holometabola; Diptera; Brachycera; Muscomorpha; Eremoneura; Cyclorrhapha; Schizophora; Acalyptratae; Ephydroidea; Drosophilidae;Drosophilinae; Drosophilini; Drosophila; Sophophora; melanogaster group; melanogaster subgroup

Parent

melanogaster subgroup () - (Rank: species subgroup)

(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id= 32351)

NCBI Taxonomy ID

(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id= 7238)

is Taxon B an Infraspecies?

Nο

melanogaster subgroup () - (Rank: species subgroup) (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id= 32351) NCBI Taxonomy ID (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id= 7226) is Taxon A an Infraspecies? Nο

GENOTYPIC CHANGE

Generic Gene Name ovo Synonyms $CG15467; CG6824; Dmel \setminus CG6824; Fs(1)K1103; fs(1)K1237; Fs(1)K1237; Fs(1)K1257; fs(1)M1; Fs(1)K1037; Fs(1)K1037;$ fs(1)M38; Ovo; OVO; Ovo-D; ovo/shavenbaby; ovo/svb; ovoD; Shv; svb; Svb; Svb/Ovo 7227.FBpp0291128 $(http://string-db.org/newstring_cgi/show_network_section.pl? identifier = 7227. FBpp 0291128$ GO - Molecular Function GO:0001228 : DNA-binding transcription activator activity, RNA polymerase II-specific (https://www.ebi.ac.uk/QuickGO/term/GO:0001228) GO:0043565 : sequence-specific DNA binding (https://www.ebi.ac.uk/QuickGO/term/GO:0043565) GO:0046872 : metal ion binding (https://www.ebi.ac.uk/QuickGO/term/GO:0046872) GO:0003677: DNA binding (https://www.ebi.ac.uk/QuickGO/term/GO:0003677) GO:0001078: proximal promoter DNA-binding transcription repressor activity, RNA polymerase II-specific (https://www.ebi.ac.uk/QuickGO/term/GO:0001078) GO - Biological Process $\label{eq:GO:0045944} GO: 0045944: positive regulation of transcription by RNA polymerase II$ (https://www.ebi.ac.uk/QuickGO/term/GO:0045944) $GO: 0006355: regulation\ of\ transcription,\ DNA-templated$ (https://www.ebi.ac.uk/QuickGO/term/GO:0006355)GO:0008343 : adult feeding behavior (https://www.ebi.ac.uk/QuickGO/term/GO:0008343) GO :0000122: negative regulation of transcription by RNA polymerase II (https://www.ebi.ac.uk/QuickGO/term/GO:0000122) GO:0045892: negative regulation of transcription, DNA-templated (https://www.ebi.ac.uk/QuickGO/term/GO:0045892) $GO: 0045893: positive\ regulation\ of\ transcription,\ DNA-templated$ (https://www.ebi.ac.uk/QuickGO/term/GO:0045893) GO:0007010 : cytoskeleton organization (https://www.ebi.ac.uk/QuickGO/term/GO:0007010)GO:0008360 : regulation of cell shape (https://www.ebi.ac.uk/QuickGO/term/GO:0008360) GO: 0048477: oogenesis (https://www.ebi.ac.uk/QuickGO/term/GO: 0048477) $GO: 0048067: cuticle\ pigmentation\ (https://www.ebi.ac.uk/QuickGO/term/GO: 0048067)$ GO:0009913 : epidermal cell differentiation (https://www.ebi.ac.uk/QuickGO/term/GO:0009913) $\mathsf{GO} \mathpunct{:} \mathsf{0035017} : \mathsf{cuticle} \ \mathsf{pattern} \ \mathsf{formation}$ (https://www.ebi.ac.uk/QuickGO/term/GO:0035017) GO:0019099: female germ-line sex determination (https://www.ebi.ac.uk/QuickGO/term/GO:0019099)GO:0018992 : germ-line sex determination (https://www.ebi.ac.uk/QuickGO/term/GO:0018992) GO:0016348 : imaginal disc-derived leg joint morphogenesis (https://www.ebi.ac.uk/QuickGO/term/GO:0016348) GO:0035316: non-sensory hair organization (https://www.ebi.ac.uk/QuickGO/term/GO:0035316) GO:0070896 : positive regulation of transposon integration (https://www.ebi.ac.uk/QuickGO/term/GO:0070896)

UniProtKB Drosophila melanogaster

P51521 (http://www.uniprot.org/uniprot/P51521)

GenebankID or UniProtKB

ABO38688 (https://www.ncbi.nlm.nih.gov/nuccore/ABO38688)

No (https://www.gephebase.org/search-criteria?/and+Presumptive Null=^No^#gephebase-summary-title)

GO:0005737: cytoplasm (https://www.ebi.ac.uk/QuickGO/term/GO:0005737) $GO:0005654: nucleoplasm \ (https://www.ebi.ac.uk/QuickGO/term/GO:0005654)$ GO:0005634 : nucleus (https://www.ebi.ac.uk/QuickGO/term/GO:0005634)

Presumptive Null

Molecular Type

Aberration Type

Mutation #1

 $Cis-regulatory (https://www.gephebase.org/search-criteria?/and+Molecular\ Type=^Cis-regulatory^\#gephebase-summary-title)$

GO - Cellular Component

 $Unknown \ (https://www.gephebase.org/search-criteria?/and+Aberration \ Type=^Unknown^* \\ \#gephebase-summary-title)$

Molecular Details of the Mutation

 $Linkage\ Mapping\ (https://www.gephebase.org/search-criteria?/and+Experimental\ Evidence=^Linkage\ Mapping^*\\ #gephebase-summary-title)$

Experimental Evidence

Morphological evolution through multiple cis-regulatory mutations at a single gene. (2007) (https://pubmed.ncbi.nlm.nih.gov/17632547)

Main Reference

McGregor AP; Orgogozo V; Delon I; Zanet J; Srinivasan DG; Payre F; Stern DL

Authors

One central, and yet unsolved, question in evolutionary biology is the relationship between the genetic variants segregating within species and the causes of morphological differences between species. The classic neo-darwinian view postulates that species differences result from the accumulation of small-effect changes at multiple loci. However, many examples support the possible role of larger abrupt changes in the expression of developmental genes in morphological evolution. Although this evidence might be considered a challenge to a neo-darwinian micromutationist view of evolution, there are currently few examples of the actual genes causing morphological differences between species. Here we examine the genetic basis of a trichome pattern difference between Drosophila species, previously shown to result from the evolution of a single gene, shavenbaby (svb), probably through cisregulatory changes. We first identified three distinct svb enhancers from D. melanogaster driving reporter gene expression in partly overlapping patterns that together recapitulate endogenous svb expression. All three homologous enhancers from D. sechellia drive expression in modified patterns, in a direction consistent with the evolved svb expression pattern. To test the influence of these enhancers on the actual phenotypic difference, we conducted interspecific genetic mapping at a resolution sufficient to recover multiple intragenic recombinants. This functional analysis revealed that independent genetic regions upstream of svb that overlap the three identified enhancers are collectively required to generate the D.sechellia trichome pattern. Our results demonstrate that the accumulation of multiple small-effect changes at a single locus underlies the evolution of a morphological difference between species. These data support the view that alleles of large effect that distinguish species may sometimes reflect the accumulation of multiple mutations of small effect at select

Additional References

Presumptive Null

Molecular Type

Aberration Type

Experimental Evidence

Mutation #2

Enhancer A

 $No\ (https://www.gephebase.org/search-criteria?/and+Presumptive\ Null=^No^\#gephebase-summary-title)$

 $Cis-regulatory (https://www.gephebase.org/search-criteria?/and+Molecular\ Type=^Cis-regulatory^\#gephebase-summary-title)$

 $Unknown \ (https://www.gephebase.org/search-criteria?/and+Aberration \ Type=^Unknown^\#gephebase-summary-title)$

Molecular Details of the Mutation

Enhancer 7

 $Linkage\ Mapping\ (https://www.gephebase.org/search-criteria?/and+Experimental\ Evidence=`Linkage\ Mapping\ ^\#gephebase-summary-title)$

Morphological evolution through multiple cis-regulatory mutations at a single gene. (2007) (https://pubmed.ncbi.nlm.nih.gov/17632547)

Authors

Main Reference

McGregor AP; Orgogozo V; Delon I; Zanet J; Srinivasan DG; Payre F; Stern DL

Abstract

One central, and yet unsolved, question in evolutionary biology is the relationship between the genetic variants segregating within species and the causes of morphological differences between species. The classic neo-darwinian view postulates that species differences result from the accumulation of small-effect changes at multiple loci. However, many examples support the possible role of larger abrupt changes in the expression of developmental genes in morphological evolution. Although this evidence might be considered a challenge to a neo-darwinian micromutationist view of evolution, there are currently few examples of the actual genes causing morphological differences between species. Here we examine the genetic basis of a trichome pattern difference between Drosophila species, previously shown to result from the evolution of a single gene, shavenbaby (svb), probably through cisregulatory changes. We first identified three distinct svb enhancers from D. melanogaster driving reporter gene expression in partly overlapping patterns that together recapitulate endogenous svb expression. All three homologous enhancers from D. sechellia drive expression in modified patterns, in a direction consistent with the evolved svb expression pattern. To test the influence of these enhancers on the actual phenotypic difference, we conducted interspecific genetic mapping at a resolution sufficient to recover multiple intragenic recombinants. This functional analysis revealed that independent genetic regions upstream of svb that overlap the three identified enhancers are collectively required to generate the D. sechellia trichome pattern. Our results demonstrate that the accumulation of multiple small-effect changes at a single locus underlies the evolution of a morphological difference between species. These data support the view that alleles of large effect that distinguish species may sometimes reflect the accumulation of multiple mutations of small effect at select

Additional References

 $No\ (https://www.gephebase.org/search-criteria?/and+Presumptive\ Null=^No^\#gephebase-summary-title)$

Presumptive Null Molecular Type

 $Cis-regulatory \ (https://www.gephebase.org/search-criteria?/and+Molecular\ Type=^Cis-regulatory^\#gephebase-summary-title)$

Aberration Type

 $Unknown \ (https://www.gephebase.org/search-criteria?/and+Aberration \ Type=`Unknown`\#gephebase-summary-title)$

Molecular Details of the Mutation

Enhancer Z

Experimental Evidence

Linkage Mapping (https://www.gephebase.org/search-criteria?/and+Experimental Evidence=^Linkage Mapping^#gephebase-summary-title)

Main Reference

Phenotypic robustness conferred by apparently redundant transcriptional enhancers. (2010) (https://pubmed.ncbi.nlm.nih.gov/20512118)

Authors

Frankel N; Davis GK; Vargas D; Wang S; Payre F; Stern DL

Abstract

Genes include cis-regulatory regions that contain transcriptional enhancers. Recent reports have shown that developmental genes often possess multiple discrete enhancer modules that drive transcription in similar spatio-temporal patterns: primary enhancers located near the basal promoter and secondary, or 'shadow', enhancers located at more remote positions. It has been proposed that the seemingly redundant activity of primary and secondary enhancers contributes to phenotypic robustness. We tested this hypothesis by generating a deficiency that removes two newly discovered enhancers of shavenbaby (svb, a transcript of the ovo locus), a gene encoding a transcription factor that directs development of Drosophila larval

trichomes. At optimal temperatures for embryonic development, this deficiency causes minor defects in trichome patterning. In embryos that develop at both low and high extreme temperatures, however, absence of these secondary enhancers leads to extensive loss of trichomes. These temperature-dependent defects can be rescued by a transgene carrying a secondary enhancer driving transcription of the svb cDNA. Finally, removal of one copy of wingless, a gene required for normal trichome patterning, causes a similar loss of trichomes only in flies lacking the secondary enhancers. These results support the hypothesis that secondary enhancers contribute to phenotypic robustness in the face of environmental and genetic variability.

Additional References

Mutation #4

Enhancer DG2

 $No \ (https://www.gephebase.org/search-criteria?/and+Presumptive \ Null=^No^\#gephebase-summary-title)$

 $Cis-regulatory \ (https://www.gephebase.org/search-criteria?/and+Molecular\ Type=^Cis-regulatory^\#gephebase-summary-title)$

 $Unknown \ (https://www.gephebase.org/search-criteria?/and+Aberration \ Type=^Unknown^{\#}gephebase-summary-title)$

Chikhown (https://www.gephebase.org/search chicha./and-/hoenation Type Chikhown #gephebase sammary title

Linkage Mapping (https://www.gephebase.org/search-criteria?/and+Experimental Evidence=^Linkage Mapping^#gephebase-summary-title)

Phenotypic robustness conferred by apparently redundant transcriptional enhancers. (2010) (https://pubmed.ncbi.nlm.nih.gov/20512118)

Frankel N; Davis GK; Vargas D; Wang S; Payre F; Stern DL

Presumptive Null

Molecular Type

Aberration Type

Molecular Details of the Mutation

Experimental Evidence

Main Reference

Authors

Abstract

Genes include cis-regulatory regions that contain transcriptional enhancers. Recent reports have shown that developmental genes often possess multiple discrete enhancer modules that drive transcription in similar spatio-temporal patterns: primary enhancers located near the basal promoter and secondary, or 'shadow', enhancers located at more remote positions. It has been proposed that the seemingly redundant activity of primary and secondary enhancers contributes to phenotypic robustness. We tested this hypothesis by generating a deficiency that removes two newly discovered enhancers of shavenbaby (svb, a transcript of the ovo locus), a gene encoding a transcription factor that directs development of Drosophila larval trichomes. At optimal temperatures for embryonic development, this deficiency causes minor defects in trichome patterning. In embryos that develop at both low and high extreme temperatures, however, absence of these secondary enhancers leads to extensive loss of trichomes. These temperature-dependent defects can be rescued by a transgene carrying a secondary enhancer driving transcription of the svb cDNA. Finally, removal of one copy of wingless, a gene required for normal trichome patterning, causes a similar loss of trichomes only in flies lacking the secondary enhancers. These results support the hypothesis that secondary enhancers contribute to phenotypic robustness in the face of environmental and genetic variability.

Additional References

Mutation #5

 $No\ (https://www.gephebase.org/search-criteria?/and+Presumptive\ Null=^No^\#gephebase-summary-title)$

 $Cis-regulatory (https://www.gephebase.org/search-criteria?/and+Molecular\ Type=^Cis-regulatory^\#gephebase-summary-title)$

 $SNP \ (https://www.gephebase.org/search-criteria?/and+Aberration \ Type=^SNP^\#gephebase-summary-title)$

Enhancer E6; first epistatic mutation (5 in total)

 $Linkage\ Mapping\ (https://www.gephebase.org/search-criteria?/and+Experimental\ Evidence=``Linkage\ Mapping``\#gephebase-summary-title)$

Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. (2011) (https://pubmed.ncbi.nlm.nih.gov/21720363)

Frankel N; Erezyilmaz DF; McGregor AP; Wang S; Payre F; Stern DL

Presumptive Null

Molecular Type

Aberration Type

Molecular Details of the Mutation

Experimental Evidence

Main Reference

Main Keterence

Authors Abstract

Morphology evolves often through changes in developmental genes, but the causal mutations, and their effects, remain largely unknown. The evolution of naked cuticle on larvae of Drosophila sechellia resulted from changes in five transcriptional enhancers of shavenbaby (svb), a transcript of the ovo locus that encodes a transcription factor that governs morphogenesis of microtrichiae, hereafter called 'trichomes'. Here we show that the function of one of these enhancers evolved through multiple single-nucleotide substitutions that altered both the timing and level of svb expression. The consequences of these nucleotide substitutions on larval morphology were quantified with a novel functional assay. We found that each substitution had a relatively small phenotypic effect, and that many nucleotide changes account for this large morphological difference. In addition, we observed that the substitutions had non-additive effects. These data provide unprecedented resolution of the phenotypic effects of substitutions and show how individual nucleotide changes in a transcriptional enhancer have caused morphological evolution.

Additional References

Presumptive Null

Molecular Type

Aberration Type

Evolved Repression Overcomes Enhancer Robustness. (2016) (https://pubmed.ncbi.nlm.nih.gov/27840106)

Mutation #6

 $No \ (https://www.gephebase.org/search-criteria?/and+Presumptive \ Null=^No^\#gephebase-summary-title)$

 $Cis-regulatory (https://www.gephebase.org/search-criteria?/and+Molecular\ Type=^Cis-regulatory^\#gephebase-summary-title)$

 $SNP \ (https://www.gephebase.org/search-criteria?/and+Aberration \ Type=^SNP^\#gephebase-summary-title)$

Enhancer E6; 2nd epistatic mutation (5 in total)

Molecular Details of the Mutation

Experimental Evidence

Main Reference

Linkage Mapping (https://www.gephebase.org/search-criteria?/and+Experimental Evidence=^Linkage Mapping^#gephebase-summary-title)

Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. (2011) (https://pubmed.ncbi.nlm.nih.gov/21720363)

Authors

Frankel N; Erezyilmaz DF; McGregor AP; Wang S; Payre F; Stern DL

Abstract

Morphology evolves often through changes in developmental genes, but the causal mutations, and their effects, remain largely unknown. The evolution of naked cuticle on larvae of Drosophila sechellia resulted from changes in five transcriptional enhancers of shavenbaby (svb), a transcript of the ovo locus that encodes a transcription factor that governs morphogenesis of microtrichiae, hereafter called 'trichomes'. Here we show that the function of one of these enhancers evolved through multiple single-nucleotide substitutions that altered both the timing and level of svb expression. The consequences of these nucleotide substitutions on larval morphology were quantified with a novel functional assay. We found that each substitution had a relatively small phenotypic effect, and that many nucleotide changes account for this large morphological difference. In addition, we observed that the substitutions had non-additive effects. These data provide unprecedented resolution of the phenotypic effects of substitutions and show how individual nucleotide changes in a transcriptional enhancer have caused morphological evolution.

Additional References

Evolved Repression Overcomes Enhancer Robustness. (2016) (https://pubmed.ncbi.nlm.nih.gov/27840106)

Mutation #7

Presumptive Null

 $No\ (https://www.gephebase.org/search-criteria?/and+Presumptive\ Null=^No^\#gephebase-summary-title)$

SNP (https://www.gephebase.org/search-criteria?/and+Aberration Type=^SNP^#gephebase-summary-title)

Molecular Type

 $Cis-regulatory (https://www.gephebase.org/search-criteria?/and+Molecular\ Type=^Cis-regulatory^\#gephebase-summary-title)$

Aberration Type

Enhancer E6; 3rd epistatic mutation (5 in total)

Molecular Details of the Mutation

 $Linkage\ Mapping\ (https://www.gephebase.org/search-criteria?/and+Experimental\ Evidence=`Linkage\ Mapping\ ^\#gephebase-summary-title)$

Experimental Evidence

Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. (2011) (https://pubmed.ncbi.nlm.nih.gov/21720363)

Main Reference

Frankel N; Erezyilmaz DF; McGregor AP; Wang S; Payre F; Stern DL

Abstract

Authors

Morphology evolves often through changes in developmental genes, but the causal mutations, and their effects, remain largely unknown. The evolution of naked cuticle on larvae of Drosophila sechellia resulted from changes in five transcriptional enhancers of shavenbaby (svb), a transcript of the ovo locus that encodes a transcription factor that governs morphogenesis of microtrichiae, hereafter called 'trichomes'. Here we show that the function of one of these enhancers evolved through multiple single-nucleotide substitutions that altered both the timing and level of svb expression. The consequences of these nucleotide substitutions on larval morphology were quantified with a novel functional assay. We found that each substitution had a relatively small phenotypic effect, and that many nucleotide changes account for this large morphological difference. In addition, we observed that the substitutions had non-additive effects. These data provide unprecedented resolution of the phenotypic effects of substitutions and show how individual nucleotide changes in a transcriptional enhancer have caused morphological evolution.

Additional References

Evolved Repression Overcomes Enhancer Robustness. (2016) (https://pubmed.ncbi.nlm.nih.gov/27840106)

Mutation #8

Presumptive Null

 $No\ (https://www.gephebase.org/search-criteria?/and + Presumptive\ Null= ^No^\#gephebase-summary-title)$

Molecular Type

 $Cis-regulatory \ (https://www.gephebase.org/search-criteria?/and+Molecular\ Type=^Cis-regulatory^\#gephebase-summary-title)$

Aberration Type

 $SNP\ (https://www.gephebase.org/search-criteria?/and+Aberration\ Type=^SNP^\#gephebase-summary-title)$

Molecular Details of the Mutation

Enhancer E6; 4th epistatic mutation (5 in total)

Experimental Evidence

 $Linkage\ Mapping\ (https://www.gephebase.org/search-criteria?/and+Experimental\ Evidence=`Linkage\ Mapping`*gephebase-summary-title)$

Main Reference

Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. (2011) (https://pubmed.ncbi.nlm.nih.gov/21720363)

Authors

Frankel N; Erezyilmaz DF; McGregor AP; Wang S; Payre F; Stern DL

Abstract

Morphology evolves often through changes in developmental genes, but the causal mutations, and their effects, remain largely unknown. The evolution of naked cuticle on larvae of Drosophila sechellia resulted from changes in five transcriptional enhancers of shavenbaby (svb), a transcript of the ovo locus that encodes a transcription factor that governs morphogenesis of microtrichiae, hereafter called 'trichomes'. Here we show that the function of one of these enhancers evolved through multiple single-nucleotide substitutions that altered both the timing and level of svb expression. The consequences of these nucleotide substitutions on larval morphology were quantified with a novel functional assay. We found that each substitution had a relatively small phenotypic effect, and that many nucleotide changes account for this large morphological difference. In addition, we observed that the substitutions had non-additive effects. These data provide unprecedented resolution of the phenotypic effects of substitutions and show how individual nucleotide changes in a transcriptional enhancer have caused morphological evolution.

Additional References

Evolved Repression Overcomes Enhancer Robustness. (2016) (https://pubmed.ncbi.nlm.nih.gov/27840106)

Mutation #9

Presumptive Null

 $No\ (https://www.gephebase.org/search-criteria?/and+Presumptive\ Null=^No^\#gephebase-summary-title)$

Molecular Type

 $Cis-regulatory (https://www.gephebase.org/search-criteria?/and+Molecular Type=^Cis-regulatory^\#gephebase-summary-title)$

Aberration Type

 $\label{thm:permutation} Deletion (https://www.gephebase.org/search-criteria?/and+Aberration Type=^Deletion^*\#gephebase-summary-title) \\ Deletion Size$

Enhancer E6; 5th epistatic mutation = 1-bp deletion (5 in total)

 ${\sf Molecular\ Details\ of\ the\ Mutation}$

Experimental Evidence

 $Linkage\ Mapping\ (https://www.gephebase.org/search-criteria?/and+Experimental\ Evidence=`Linkage\ Mapping\ ^\#gephebase-summary-title)$

Main Reference

 $Morphological\ evolution\ caused\ by\ many\ subtle-effect\ substitutions\ in\ regulatory\ DNA.\ (2011)\ (https://pubmed.ncbi.nlm.nih.gov/21720363)$

Authors

Frankel N; Erezyilmaz DF; McGregor AP; Wang S; Payre F; Stern DL

Abstract

Morphology evolves often through changes in developmental genes, but the causal mutations, and their effects, remain largely unknown. The evolution of naked cuticle on larvae of Drosophila sechellia resulted from changes in five transcriptional enhancers of shavenbaby (svb), a transcript of the ovo locus that encodes a transcription factor that governs morphogenesis of microtrichiae, hereafter called 'trichomes'. Here we show that the function of one of these enhancers evolved through multiple single-nucleotide substitutions that altered both the timing and level of svb expression. The consequences of these nucleotide substitutions on larval morphology were quantified with a novel functional assay. We found that each substitution had a relatively small phenotypic effect, and that many nucleotide changes account for this large morphological difference. In addition, we observed that the substitutions had non-additive effects. These data provide unprecedented resolution of the phenotypic effects of substitutions and show how individual nucleotide changes in a transcriptional enhancer have caused morphological evolution.

Additional References

Evolved Repression Overcomes Enhancer Robustness. (2016) (https://pubmed.ncbi.nlm.nih.gov/27840106)

RELATED GEPHE

1-9 bp

Related Genes

 $1 \ (Ultrabithorax \ (Ubx)) \ (https://www.gephebase.org/search-criteria?/or+Taxon \ ID=^7240^/and+Trait=Trichome \ pattern/or+Taxon \ ID=^7226^/and+Trait=Trichome \ pattern/or+Taxon \ ID=^7228^/and+Trait=Trichome \ pattern/and+groupHaplotypes=true#gephebase-summary-title)$

Related Haplotypes

No matches found.

EXTERNAL LINKS

COMMENTS

 $@Several Mutations With Effect - Entry \ validated \ by \ Ella \ Preger-Ben-Noon$