GEPHE SUMMARY Print
Gephebase Gene
Entry Status
Published
GepheID
GP00001442
Main curator
Prigent
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
ancestral human >500 000 years ago
Trait State in Taxon B
modern human and archaic hominins (Neanderthal and Denisova)
Ancestral State
Taxon A
Taxonomic Status
Taxon A
Latin Name
Common Name
human
Synonyms
human; man; Homo sapiens Linnaeus, 1758; Home sapiens; Homo sampiens; Homo sapeins; Homo sapian; Homo sapians; Homo sapien; Homo sapience; Homo sapiense; Homo sapients; Homo sapines; Homo spaiens; Homo spiens; Humo sapiens
Rank
species
Lineage
Show more ... opterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria; Euarchontoglires; Primates; Haplorrhini; Simiiformes; Catarrhini; Hominoidea; Hominidae; Homininae; Homo
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Latin Name
Common Name
human
Synonyms
human; man; Homo sapiens Linnaeus, 1758; Home sapiens; Homo sampiens; Homo sapeins; Homo sapian; Homo sapians; Homo sapien; Homo sapience; Homo sapiense; Homo sapients; Homo sapines; Homo spaiens; Homo spiens; Humo sapiens
Rank
species
Lineage
Show more ... opterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria; Euarchontoglires; Primates; Haplorrhini; Simiiformes; Catarrhini; Hominoidea; Hominidae; Homininae; Homo
NCBI Taxonomy ID
is Taxon B an Infraspecies?
No
GENOTYPIC CHANGE
UniProtKB
Homo sapiens
GenebankID or UniProtKB
Presumptive Null
Yes
Molecular Type
Aberration Type
SNP
SNP Coding Change
-
Molecular Details of the Mutation
c.661C>G new splice site mutation removing 55nt from exon 5 truncating a GAP domain
Experimental Evidence
Taxon A Taxon B Position
Codon - - -
Amino-acid - - -
Authors
Florio M; Namba T; Pääbo S; Hiller M; Huttner WB
Abstract
The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase-activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex.
Additional References
RELATED GEPHE
Related Genes
Related Haplotypes
No matches found.
EXTERNAL LINKS
COMMENTS
@Splicing
YOUR FEEDBACK is welcome!