GEPHE SUMMARY Print
Entry Status
Published
GepheID
GP00001501
Main curator
Prigent
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
Budding yeast
Trait State in Taxon B
Budding yeast West African DBVPG6044 (WA)
Ancestral State
Taxon A
Taxonomic Status
Taxon A
Common Name
baker's yeast
Synonyms
Saccharomyces capensis; Saccharomyces italicus; Saccharomyces oviformis; Saccharomyces uvarum var. melibiosus; baker's yeast; S. cerevisiae; brewer's yeast; ATCC 18824; ATCC:18824; CBS 1171; CBS:1171; NRRL Y-12632; NRRL:Y:12632; Saccaromyces cerevisiae; Saccharomyce cerevisiae; Saccharomyes cerevisiae; Sccharomyces cerevisiae
Rank
species
Lineage
cellular organisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Saccharomyces
NCBI Taxonomy ID
is Taxon A an Infraspecies?
Yes
Taxon A Description
Budding yeast (wild strains - see article)
Taxon B
Common Name
baker's yeast
Synonyms
Saccharomyces capensis; Saccharomyces italicus; Saccharomyces oviformis; Saccharomyces uvarum var. melibiosus; baker's yeast; S. cerevisiae; brewer's yeast; ATCC 18824; ATCC:18824; CBS 1171; CBS:1171; NRRL Y-12632; NRRL:Y:12632; Saccaromyces cerevisiae; Saccharomyce cerevisiae; Saccharomyes cerevisiae; Sccharomyces cerevisiae
Rank
species
Lineage
cellular organisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Saccharomyces
NCBI Taxonomy ID
is Taxon B an Infraspecies?
Yes
Taxon B Description
Budding yeast West African DBVPG6044 (WA)
GENOTYPIC CHANGE
UniProtKB
Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
GenebankID or UniProtKB
Presumptive Null
No
Molecular Type
Aberration Type
Molecular Details of the Mutation
several synonymous and promoter mutations
Experimental Evidence
Authors
Ibstedt S; Stenberg S; Bagés S; Gjuvsland AB; Salinas F; Kourtchenko O; Samy JK; Blomberg A; et al. ... show more
Abstract
Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organism's life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection.

© The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Additional References
RELATED GEPHE
EXTERNAL LINKS
COMMENTS
PUT4 encoding a high-affinity proline permease
YOUR FEEDBACK is welcome!