GEPHE SUMMARY Print
Gephebase Gene
Entry Status
Published
GepheID
GP00001771
Main curator
Courtier
PHENOTYPIC CHANGE
Trait Category
Trait
Trait State in Taxon A
blue-sensitive cone pigments SWS2 with lambda-max = 430-450 nm
Trait State in Taxon B
blue-sensitive cone pigments SWS2 with lambda-max = 467 nm
Ancestral State
Taxon A
Taxonomic Status
Taxon A
Latin Name
Common Name
sculpins
Synonyms
Abyssocottidae; Comephoridae; Cottocomephoridae; sculpins; Baikal oilfishes
Rank
family
Lineage
Show more ... i; Osteoglossocephalai; Clupeocephala; Euteleosteomorpha; Neoteleostei; Eurypterygia; Ctenosquamata; Acanthomorphata; Euacanthomorphacea; Percomorphaceae; Eupercaria; Perciformes; Cottioidei; Cottales
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Latin Name
Common Name
bullhead
Synonyms
bullhead; Cottus gobio Linnaeus, 1758
Rank
species
Lineage
Show more ... alai; Clupeocephala; Euteleosteomorpha; Neoteleostei; Eurypterygia; Ctenosquamata; Acanthomorphata; Euacanthomorphacea; Percomorphaceae; Eupercaria; Perciformes; Cottioidei; Cottales; Cottidae; Cottus
NCBI Taxonomy ID
is Taxon B an Infraspecies?
No
GENOTYPIC CHANGE
Mutation #1
Presumptive Null
No
Molecular Type
Aberration Type
SNP
SNP Coding Change
Nonsynonymous
Molecular Details of the Mutation
Ala118Thr
Experimental Evidence
Taxon A Taxon B Position
Codon - - -
Amino-acid Ala Thr 118
Authors
Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM
Abstract
The cottoid fishes of Lake Baikal in eastern Siberia provide a unique opportunity to study the evolution of visual pigments in a group of closely related species exposed to different photic environments. Members of this species flock are adapted to different depth habitats down to >1000 m, and both the rod and cone visual pigments display short wave shifts as depth increases. The blue-sensitive cone pigments of the SWS2 class cluster into two species groups with lambda(max) values of 450 and 430 nm, with the pigment in Cottus gobio, a cottoid fish native to Britain, forming a third group with a lambda(max) of 467 nm. The sequences of the SWS2 opsin gene from C. gobio and from two representatives of the 450 and 430 nm Baikal groups are presented. Approximately 6 nm of the spectral difference between C. gobio and the 450 nm Baikal group can be ascribed to the presence of a porphyropsin/rhodopin mixture in C. gobio. Subsequent analysis of amino acid substitutions by site-directed mutagenesis demonstrates that the remainder of the shift from 461 to 450 nm arises from a Thr269Ala substitution and the shift from 450 to 430 nm at least partly from Thr118Ala and Thr118Gly substitutions. The underlying adaptive significance of these substitutions in terms of spectral tuning and signal-to-noise ratio is discussed.
Additional References
Mutation #2
Presumptive Null
No
Molecular Type
Aberration Type
SNP
SNP Coding Change
Nonsynonymous
Molecular Details of the Mutation
Gly215Pro
Experimental Evidence
Taxon A Taxon B Position
Codon - - -
Amino-acid Gly Pro 215
Authors
Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM
Abstract
The cottoid fishes of Lake Baikal in eastern Siberia provide a unique opportunity to study the evolution of visual pigments in a group of closely related species exposed to different photic environments. Members of this species flock are adapted to different depth habitats down to >1000 m, and both the rod and cone visual pigments display short wave shifts as depth increases. The blue-sensitive cone pigments of the SWS2 class cluster into two species groups with lambda(max) values of 450 and 430 nm, with the pigment in Cottus gobio, a cottoid fish native to Britain, forming a third group with a lambda(max) of 467 nm. The sequences of the SWS2 opsin gene from C. gobio and from two representatives of the 450 and 430 nm Baikal groups are presented. Approximately 6 nm of the spectral difference between C. gobio and the 450 nm Baikal group can be ascribed to the presence of a porphyropsin/rhodopin mixture in C. gobio. Subsequent analysis of amino acid substitutions by site-directed mutagenesis demonstrates that the remainder of the shift from 461 to 450 nm arises from a Thr269Ala substitution and the shift from 450 to 430 nm at least partly from Thr118Ala and Thr118Gly substitutions. The underlying adaptive significance of these substitutions in terms of spectral tuning and signal-to-noise ratio is discussed.
Additional References
Mutation #3
Presumptive Null
No
Molecular Type
Aberration Type
SNP
SNP Coding Change
Nonsynonymous
Molecular Details of the Mutation
Ala269Pro
Experimental Evidence
Taxon A Taxon B Position
Codon - - -
Amino-acid Ala Thr 269
Authors
Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM
Abstract
The cottoid fishes of Lake Baikal in eastern Siberia provide a unique opportunity to study the evolution of visual pigments in a group of closely related species exposed to different photic environments. Members of this species flock are adapted to different depth habitats down to >1000 m, and both the rod and cone visual pigments display short wave shifts as depth increases. The blue-sensitive cone pigments of the SWS2 class cluster into two species groups with lambda(max) values of 450 and 430 nm, with the pigment in Cottus gobio, a cottoid fish native to Britain, forming a third group with a lambda(max) of 467 nm. The sequences of the SWS2 opsin gene from C. gobio and from two representatives of the 450 and 430 nm Baikal groups are presented. Approximately 6 nm of the spectral difference between C. gobio and the 450 nm Baikal group can be ascribed to the presence of a porphyropsin/rhodopin mixture in C. gobio. Subsequent analysis of amino acid substitutions by site-directed mutagenesis demonstrates that the remainder of the shift from 461 to 450 nm arises from a Thr269Ala substitution and the shift from 450 to 430 nm at least partly from Thr118Ala and Thr118Gly substitutions. The underlying adaptive significance of these substitutions in terms of spectral tuning and signal-to-noise ratio is discussed.
Additional References
RELATED GEPHE
Related Genes
No matches found.
Related Haplotypes
No matches found.
EXTERNAL LINKS
COMMENTS
@SeveralMutationsWithEffect
YOUR FEEDBACK is welcome!