GEPHE SUMMARY Print
Gephebase Gene
Entry Status
Published
GepheID
GP00001910
Main curator
Courtier
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
presence of stomach and gastric acid production
Trait State in Taxon B
loss of stomach and no gastric acid production
Ancestral State
Taxon A
Taxonomic Status
Taxon A #1
Common Name
gray short-tailed opossum
Synonyms
gray short-tailed opossum; Monodelphis domesticus
Rank
species
Lineage
Show more ... iata; Vertebrata; Gnathostomata; Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Metatheria; Didelphimorphia; Didelphidae; Didelphinae; Monodelphis
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon A #2
Latin Name
Common Name
human
Synonyms
human; man; Homo sapiens Linnaeus, 1758; Home sapiens; Homo sampiens; Homo sapeins; Homo sapian; Homo sapians; Homo sapien; Homo sapience; Homo sapiense; Homo sapients; Homo sapines; Homo spaiens; Homo spiens; Humo sapiens
Rank
species
Lineage
Show more ... opterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria; Euarchontoglires; Primates; Haplorrhini; Simiiformes; Catarrhini; Hominoidea; Hominidae; Homininae; Homo
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Common Name
platypus
Synonyms
platypus; duck-billed platypus; duckbill platypus; Ornythorhynchus anatinus
Rank
species
Lineage
Show more ... Chordata; Craniata; Vertebrata; Gnathostomata; Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Prototheria; Monotremata; Ornithorhynchidae; Ornithorhynchus
NCBI Taxonomy ID
is Taxon B an Infraspecies?
No
GENOTYPIC CHANGE
Mutation #1
Presumptive Null
Yes
Molecular Type
Aberration Type
SNP
SNP Coding Change
Nonsense
Molecular Details of the Mutation
premature stop codon in exon 7 (Lys295Ter) and deletion leading to the loss of six of its nine exons
Experimental Evidence
Taxon A Taxon B Position
Codon - - -
Amino-acid Lys STP 295
Authors
Ordoñez GR; Hillier LW; Warren WC; Grützner F; López-Otín C; Puente XS
Abstract
The duck-billed platypus (Ornithorhynchus anatinus) belongs to the mammalian subclass Prototheria, which diverged from the Theria line early in mammalian evolution. The platypus genome sequence provides a unique opportunity to illuminate some aspects of the biology and evolution of these animals.

We show that several genes implicated in food digestion in the stomach have been deleted or inactivated in platypus. Comparison with other vertebrate genomes revealed that the main genes implicated in the formation and activity of gastric juice have been lost in platypus. These include the aspartyl proteases pepsinogen A and pepsinogens B/C, the hydrochloric acid secretion stimulatory hormone gastrin, and the alpha subunit of the gastric H+/K+-ATPase. Other genes implicated in gastric functions, such as the beta subunit of the H+/K+-ATPase and the aspartyl protease cathepsin E, have been inactivated because of the acquisition of loss-of-function mutations. All of these genes are highly conserved in vertebrates, reflecting a unique pattern of evolution in the platypus genome not previously seen in other mammalian genomes.

The observed loss of genes involved in gastric functions might be responsible for the anatomical and physiological differences in gastrointestinal tract between monotremes and other vertebrates, including small size, lack of glands, and high pH of the monotreme stomach. This study contributes to a better understanding of the mechanisms that underlie the evolution of the platypus genome, might extend the less-is-more evolutionary model to monotremes, and provides novel insights into the importance of gene loss events during mammalian evolution.
Additional References
Mutation #2
Presumptive Null
Yes
Molecular Type
Aberration Type
Deletion Size
-
Molecular Details of the Mutation
deletion leading to the loss of six of its nine exons - the high abundance of repetitive elements in the CTSE region (more than 3.8 interspersed elements per kilobase as compared with 2 for the genome average) might have contributed to the deletion of six out of the nine exons of CTSE by nonallelic homologous recombination between these repetitive elements - the CTSE gene has been disrupted by the insertion of long interspersed elements (LINEs) and short interspersed elements (SINEs) in exons 7 and 9; disrupting the protein coding region - Exon 9 was disrupted by the insertion of a LINE2 Plat1m element which was further disrupted by the insertion of a SINE Mon1f3 element
Experimental Evidence
Authors
Ordoñez GR; Hillier LW; Warren WC; Grützner F; López-Otín C; Puente XS
Abstract
The duck-billed platypus (Ornithorhynchus anatinus) belongs to the mammalian subclass Prototheria, which diverged from the Theria line early in mammalian evolution. The platypus genome sequence provides a unique opportunity to illuminate some aspects of the biology and evolution of these animals.

We show that several genes implicated in food digestion in the stomach have been deleted or inactivated in platypus. Comparison with other vertebrate genomes revealed that the main genes implicated in the formation and activity of gastric juice have been lost in platypus. These include the aspartyl proteases pepsinogen A and pepsinogens B/C, the hydrochloric acid secretion stimulatory hormone gastrin, and the alpha subunit of the gastric H+/K+-ATPase. Other genes implicated in gastric functions, such as the beta subunit of the H+/K+-ATPase and the aspartyl protease cathepsin E, have been inactivated because of the acquisition of loss-of-function mutations. All of these genes are highly conserved in vertebrates, reflecting a unique pattern of evolution in the platypus genome not previously seen in other mammalian genomes.

The observed loss of genes involved in gastric functions might be responsible for the anatomical and physiological differences in gastrointestinal tract between monotremes and other vertebrates, including small size, lack of glands, and high pH of the monotreme stomach. This study contributes to a better understanding of the mechanisms that underlie the evolution of the platypus genome, might extend the less-is-more evolutionary model to monotremes, and provides novel insights into the importance of gene loss events during mammalian evolution.
Additional References
RELATED GEPHE
EXTERNAL LINKS
COMMENTS
@TE lack of acid secretion in the platypus stomach - this is a characteristic feature of monotremes whose gastric juice is above pH 6
YOUR FEEDBACK is welcome!