GEPHE SUMMARY
Gephebase Gene
Entry Status
Published
GepheID
GP00000195
Main curator
Martin
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
Saccharomyces cerevisiae
Trait State in Taxon B
Saccharomyces cerevisiae
Ancestral State
Taxon A
Taxonomic Status
Taxon A
Common Name
baker's yeast
Synonyms
Saccharomyces capensis; Saccharomyces italicus; Saccharomyces oviformis; Saccharomyces uvarum var. melibiosus; baker's yeast; S. cerevisiae; brewer's yeast; ATCC 18824; ATCC:18824; CBS 1171; CBS:1171; NRRL Y-12632; NRRL:Y:12632; Saccaromyces cerevisiae; Saccharomyce cerevisiae; Saccharomyes cerevisiae; Sccharomyces cerevisiae
Rank
species
Lineage
cellular organisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Saccharomyces
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Common Name
baker's yeast
Synonyms
Saccharomyces capensis; Saccharomyces italicus; Saccharomyces oviformis; Saccharomyces uvarum var. melibiosus; baker's yeast; S. cerevisiae; brewer's yeast; ATCC 18824; ATCC:18824; CBS 1171; CBS:1171; NRRL Y-12632; NRRL:Y:12632; Saccaromyces cerevisiae; Saccharomyce cerevisiae; Saccharomyes cerevisiae; Sccharomyces cerevisiae
Rank
species
Lineage
cellular organisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Saccharomyces
NCBI Taxonomy ID
is Taxon B an Infraspecies?
No
GENOTYPIC CHANGE
Presumptive Null
Yes
Molecular Type
Aberration Type
SNP
SNP Coding Change
Nonsense
Molecular Details of the Mutation
1bp substitution resulting in premature stop codon
Experimental Evidence
Taxon A Taxon B Position
Codon - - -
Amino-acid - - -
Authors
Anderson JB; Funt J; Thompson DA; Prabhu S; Socha A; Sirjusingh C; Dettman JR; Parreiras L; et al. ... show more
Abstract
Divergent adaptation can be associated with reproductive isolation in speciation [1]. We recently demonstrated the link between divergent adaptation and the onset of reproductive isolation in experimental populations of the yeast Saccharomyces cerevisiae evolved from a single progenitor in either a high-salt or a low-glucose environment [2]. Here, whole-genome resequencing and comparative genome hybridization of representatives of three populations revealed 17 mutations, six of which explained the adaptive increases in mitotic fitness. In two populations evolved in high salt, two different mutations occurred in the proton efflux pump gene PMA1 and the global transcriptional repressor gene CYC8; the ENA genes encoding sodium efflux pumps were overexpressed once through expansion of this gene cluster and once because of mutation in the regulator CYC8. In the population from low glucose, one mutation occurred in MDS3, which modulates growth at high pH, and one in MKT1, a global regulator of mRNAs encoding mitochondrial proteins, the latter recapitulating a naturally occurring variant. A Dobzhansky-Muller (DM) incompatibility between the evolved alleles of PMA1 and MKT1 strongly depressed fitness in the low-glucose environment. This DM interaction is the first reported between experimentally evolved alleles of known genes and shows how reproductive isolation can arise rapidly when divergent selection is strong.

Copyright (c) 2010 Elsevier Ltd. All rights reserved.
RELATED GEPHE
Related Haplotypes
No matches found.
COMMENTS
YOUR FEEDBACK is welcome!