GEPHE SUMMARY Print
Entry Status
Published
GepheID
GP00001952
Main curator
Courtier
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
able to synthesise cholesterol de novo
Trait State in Taxon B
unable to synthesise cholesterol de novo
Ancestral State
Taxon A
Taxonomic Status
Taxon A
Latin Name
Common Name
human
Synonyms
human; man; Homo sapiens Linnaeus, 1758; Home sapiens; Homo sampiens; Homo sapeins; Homo sapian; Homo sapians; Homo sapien; Homo sapience; Homo sapiense; Homo sapients; Homo sapines; Homo spaiens; Homo spiens; Humo sapiens
Rank
species
Lineage
Show more ... opterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria; Euarchontoglires; Primates; Haplorrhini; Simiiformes; Catarrhini; Hominoidea; Hominidae; Homininae; Homo
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Common Name
fruit fly
Synonyms
Sophophora melanogaster; fruit fly; Drosophila melanogaster Meigen, 1830; Sophophora melanogaster (Meigen, 1830); Drosophila melangaster
Rank
species
Lineage
Show more ... Brachycera; Muscomorpha; Eremoneura; Cyclorrhapha; Schizophora; Acalyptratae; Ephydroidea; Drosophilidae; Drosophilinae; Drosophilini; Drosophila; Sophophora; melanogaster group; melanogaster subgroup
NCBI Taxonomy ID
is Taxon B an Infraspecies?
No
GENOTYPIC CHANGE
Presumptive Null
Yes
Molecular Type
Aberration Type
Deletion Size
unknown
Molecular Details of the Mutation
gene absent in the genome
Experimental Evidence
Authors
Vinci G; Xia X; Veitia RA
Abstract
It is known that primary sequences of enzymes involved in sterol biosynthesis are well conserved in organisms that produce sterols de novo. However, we provide evidence for a preservation of the corresponding genes in two animals unable to synthesize cholesterol (auxotrophs): Drosophila melanogaster and Caenorhabditis elegans.

We have been able to detect bona fide orthologs of several ERG genes in both organisms using a series of complementary approaches. We have detected strong sequence divergence between the orthologs of the nematode and of the fruitfly; they are also very divergent with respect to the orthologs in organisms able to synthesize sterols de novo (prototrophs). Interestingly, the orthologs in both the nematode and the fruitfly are still under selective pressure. It is possible that these genes, which are not involved in cholesterol synthesis anymore, have been recruited to perform different new functions. We propose a more parsimonious way to explain their accelerated evolution and subsequent stabilization. The products of ERG genes in prototrophs might be involved in several biological roles, in addition to sterol synthesis. In the case of the nematode and the fruitfly, the relevant genes would have lost their ancestral function in cholesterogenesis but would have retained the other function(s), which keep them under pressure.

By exploiting microarray data we have noticed a strong expressional correlation between the orthologs of ERG24 and ERG25 in D. melanogaster and genes encoding factors involved in intracellular protein trafficking and folding and with Start1 involved in ecdysteroid synthesis. These potential functional connections are worth being explored not only in Drosophila, but also in Caenorhabditis as well as in sterol prototrophs.
Additional References
RELATED GEPHE
EXTERNAL LINKS
COMMENTS
@ParrallelEvolution in nematods
YOUR FEEDBACK is welcome!