GEPHE SUMMARY Print
Gephebase Gene
Entry Status
Draft
GepheID
GP00002673
Main curator
Courtier
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
low sensibility to training
Trait State in Taxon B
high sensibility to training; human-directed canine hypersociability
Ancestral State
Taxon A
Taxonomic Status
Taxon A
Common Name
dog
Synonyms
Canis canis; Canis domesticus; Canis familiaris; dog; dogs; Canis familiaris Linnaeus, 1758; Canis lupus familiaris Linnaeus, 1758
Rank
subspecies
Lineage
Show more ... tomata; Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria; Laurasiatheria; Carnivora; Caniformia; Canidae; Canis; Canis lupus
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Common Name
dog
Synonyms
Canis canis; Canis domesticus; Canis familiaris; dog; dogs; Canis familiaris Linnaeus, 1758; Canis lupus familiaris Linnaeus, 1758
Rank
subspecies
Lineage
Show more ... tomata; Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria; Laurasiatheria; Carnivora; Caniformia; Canidae; Canis; Canis lupus
NCBI Taxonomy ID
is Taxon B an Infraspecies?
No
GENOTYPIC CHANGE
Generic Gene Name
-
Synonyms
-
String
-
Sequence Similarities
-
GO - Molecular Function
-
GO - Biological Process
-
GO - Cellular Component
-
UniProtKB
GenebankID or UniProtKB
Presumptive Null
No
Molecular Type
Aberration Type
Insertion Size
100-999 bp
Molecular Details of the Mutation
Cfa6.66 = insertion of a transposable element at the GTF2I locus. vonHolt et al 2017 show that the insertion is 259 bp and contains a 187-bp TE.
Experimental Evidence
Authors
Gnanadesikan GE; Tandon D; Bray EE; Kennedy BS; Tennenbaum SR; MacLean EL; vonHoldt BM
Abstract
A strong signature of selection in the domestic dog genome is found in a five-megabase region of chromosome six in which four structural variants derived from transposons have previously been associated with human-oriented social behavior, such as attentional bias to social stimuli and social interest in strangers. To explore these genetic associations in more phenotypic detail-as well as their role in training success in a specialized assistance dog program-we genotyped 1001 assistance dogs from Canine Companions for Independence®, including both successful graduates and dogs released from the training program for behaviors incompatible with their working role. We collected phenotypes on each dog using puppy-raiser questionnaires, trainer questionnaires, and both cognitive and behavioral tests. Using Bayesian mixed models, we found strong associations (95% credibility intervals excluding zero) between genotypes and certain behavioral measures, including separation-related problems, aggression when challenged or corrected, and reactivity to other dogs. Furthermore, we found moderate differences in the genotypes of dogs who graduated versus those who did not; insertions in GTF2I showed the strongest association with training success (β = 0.23, CI = - 0.04, 0.49), translating to an odds-ratio of 1.25 for one insertion. Our results provide insight into the role of each of these four transposons in canine sociability and may inform breeding and training practices for working dog organizations. Furthermore, the observed importance of the gene GTF2I supports the emerging consensus that variation in GTF2I genotypes and expression have important consequences for social behavior broadly.

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
EXTERNAL LINKS
COMMENTS
@TE
YOUR FEEDBACK is welcome!