GEPHE SUMMARY
Gephebase Gene
Entry Status
Published
GepheID
GP00000375
Main curator
Martin
PHENOTYPIC CHANGE
Trait #1
Trait Category
Trait State in Taxon A
Arabidopsis thaliana- KAS-1
Trait State in Taxon B
Arabidopsis thaliana- TSU-1 (short FT; Low Water Use Efficiency)
Trait #2
Trait Category
Trait State in Taxon A
-
Trait State in Taxon B
-
Ancestral State
Taxon A
Taxonomic Status
Taxon A
Common Name
thale cress
Synonyms
thale cress; mouse-ear cress; thale-cress; Arabidopsis thaliana (L.) Heynh.; Arabidopsis thaliana (thale cress); Arabidopsis_thaliana; Arbisopsis thaliana; thale kress
Rank
species
Lineage
Show more ... ; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
NCBI Taxonomy ID
is Taxon A an Infraspecies?
Yes
Taxon A Description
Arabidopsis thaliana- KAS-1
Taxon B
Common Name
thale cress
Synonyms
thale cress; mouse-ear cress; thale-cress; Arabidopsis thaliana (L.) Heynh.; Arabidopsis thaliana (thale cress); Arabidopsis_thaliana; Arbisopsis thaliana; thale kress
Rank
species
Lineage
Show more ... ; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
NCBI Taxonomy ID
is Taxon B an Infraspecies?
Yes
Taxon B Description
Arabidopsis thaliana- TSU-1 (short FT; Low Water Use Efficiency)
GENOTYPIC CHANGE
Generic Gene Name
FRI
Synonyms
-
String
-
Sequence Similarities
Belongs to the Frigida family.
GO - Molecular Function
-
UniProtKB
Arabidopsis thaliana
GenebankID or UniProtKB
Presumptive Null
No
Molecular Type
Aberration Type
Deletion Size
100-999 bp
Molecular Details of the Mutation
376 bp deletion within the promoter of the TSU-1 FRI allele
Experimental Evidence
Authors
Lovell JT; Juenger TE; Michaels SD; Lasky JR; Platt A; Richards JH; Yu X; Easlon HM; et al. ... show more
Abstract
An evolutionary response to selection requires genetic variation; however, even if it exists, then the genetic details of the variation can constrain adaptation. In the simplest case, unlinked loci and uncorrelated phenotypes respond directly to multivariate selection and permit unrestricted paths to adaptive peaks. By contrast, 'antagonistic' pleiotropic loci may constrain adaptation by affecting variation of many traits and limiting the direction of trait correlations to vectors that are not favoured by selection. However, certain pleiotropic configurations may improve the conditions for adaptive evolution. Here, we present evidence that the Arabidopsis thaliana gene FRI (FRIGIDA) exhibits 'adaptive' pleiotropy, producing trait correlations along an axis that results in two adaptive strategies. Derived, low expression FRI alleles confer a 'drought escape' strategy owing to fast growth, low water use efficiency and early flowering. By contrast, a dehydration avoidance strategy is conferred by the ancestral phenotype of late flowering, slow growth and efficient water use during photosynthesis. The dehydration avoidant phenotype was recovered when genotypes with null FRI alleles were transformed with functional alleles. Our findings indicate that the well-documented effects of FRI on phenology result from differences in physiology, not only a simple developmental switch.
Additional References
COMMENTS
@Pleiotropy
YOUR FEEDBACK is welcome!