GEPHE SUMMARY Print
Gephebase Gene
Entry Status
Published
GepheID
GP00000541
Main curator
Martin
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
Drosophila melanogaster
Trait State in Taxon B
Drosophila simulans
Ancestral State
Data not curated
Taxonomic Status
Taxon A
Common Name
fruit fly
Synonyms
Sophophora melanogaster; fruit fly; Drosophila melanogaster Meigen, 1830; Sophophora melanogaster (Meigen, 1830); Drosophila melangaster
Rank
species
Lineage
Show more ... Brachycera; Muscomorpha; Eremoneura; Cyclorrhapha; Schizophora; Acalyptratae; Ephydroidea; Drosophilidae; Drosophilinae; Drosophilini; Drosophila; Sophophora; melanogaster group; melanogaster subgroup
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Common Name
-
Synonyms
-
Rank
species
Lineage
Show more ... Brachycera; Muscomorpha; Eremoneura; Cyclorrhapha; Schizophora; Acalyptratae; Ephydroidea; Drosophilidae; Drosophilinae; Drosophilini; Drosophila; Sophophora; melanogaster group; melanogaster subgroup
NCBI Taxonomy ID
is Taxon B an Infraspecies?
No
GENOTYPIC CHANGE
Presumptive Null
No
Molecular Type
Aberration Type
Molecular Details of the Mutation
Coding divergence in a conserved stretch of 10 C-terminal amino-acids
Experimental Evidence
Authors
Maheshwari S; Barbash DA
Abstract
Hybrid incompatibility (HI) genes are frequently observed to be rapidly evolving under selection. This observation has led to the attractive conjecture that selection-derived protein-sequence divergence is culpable for incompatibilities in hybrids. The Drosophila simulans HI gene Lethal hybrid rescue (Lhr) is an intriguing case, because despite having experienced rapid sequence evolution, its HI properties are a shared function inherited from the ancestral state. Using an unusual D. simulans Lhr hybrid rescue allele, Lhr(2), we here identify a conserved stretch of 10 amino acids in the C terminus of LHR that is critical for causing hybrid incompatibility. Altering these 10 amino acids weakens or abolishes the ability of Lhr to suppress the hybrid rescue alleles Lhr(1) or Hmr(1), respectively. Besides single-amino-acid substitutions, Lhr orthologs differ by a 16-aa indel polymorphism, with the ancestral deletion state fixed in D. melanogaster and the derived insertion state at very high frequency in D. simulans. Lhr(2) is a rare D. simulans allele that has the ancestral deletion state of the 16-aa polymorphism. Through a series of transgenic constructs we demonstrate that the ancestral deletion state contributes to the rescue activity of Lhr(2). This indel is thus a polymorphism that can affect the HI function of Lhr.
Additional References
EXTERNAL LINKS
COMMENTS
YOUR FEEDBACK is welcome!