GEPHE SUMMARY Print
Gephebase Gene
Entry Status
Published
GepheID
GP00000062
Main curator
Martin
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
Equus caballus
Trait State in Taxon B
Equus caballus - modern breed and predomestic fossils
Ancestral State
Taxon A
Taxonomic Status
Taxon A
Latin Name
Common Name
horse
Synonyms
Equus przewalskii f. caballus; Equus przewalskii forma caballus; horse; domestic horse; equine; Equus caballus Linnaeus, 1758
Rank
species
Lineage
Show more ... rata; Gnathostomata; Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria; Laurasiatheria; Perissodactyla; Equidae; Equus; Equus
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Latin Name
Common Name
horse
Synonyms
Equus przewalskii f. caballus; Equus przewalskii forma caballus; horse; domestic horse; equine; Equus caballus Linnaeus, 1758
Rank
species
Lineage
Show more ... rata; Gnathostomata; Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria; Laurasiatheria; Perissodactyla; Equidae; Equus; Equus
NCBI Taxonomy ID
is Taxon B an Infraspecies?
Yes
Taxon B Description
Equus caballus - modern breed and predomestic fossils
GENOTYPIC CHANGE
Presumptive Null
Yes
Molecular Type
Aberration Type
Deletion Size
10-99 bp
Molecular Details of the Mutation
11bp deletion in exon 2: g.2174_2184del11 c.191_201del
Experimental Evidence
Authors
Rieder S; Taourit S; Mariat D; Langlois B; Guérin G
Abstract
Coat color genetics, when successfully adapted and applied to different mammalian species, provides a good demonstration of the powerful concept of comparative genetics. Using cross-species techniques, we have cloned, sequenced, and characterized equine melanocortin-1-receptor (MC1R) and agouti-signaling-protein (ASIP), and completed a partial sequence of tyrosinase-related protein 1 (TYRP1). The coding sequences and parts of the flanking regions of those genes were systematically analyzed in 40 horses and mutations typed in a total of 120 horses. Our panel represented 22 different horse breeds, including 11 different coat colors of Equus caballus. The comparison of a 1721-bp genomic fragment of MC1R among the 11 coat color phenotypes revealed no sequence difference apart from the known chestnut allele (C901T). In particular, no dominant black (ED) mutation was found. In a 4994-bp genomic fragment covering the three putative exons, two introns and parts of the 5'- and 3'-UTRs of ASIP, two intronic base substitutions (SNP-A845G and C2374A), a point mutation in the 3'-UTRs (A4734G), and an 11-bp deletion in exon 2 (ADEx2) were detected. The deletion was found to be homozygous and completely associated with horse recessive black coat color (Aa/Aa) in 24 black horses out of 9 different breeds from our panel. The frameshift initiated by ADEx2 is believed to alter the regular coding sequence, acting as a loss-of-function ASIP mutation. In TYRP1 a base substitution was detected in exon 2 (C189T), causing a threonine to methionine change of yet unknown function, and an SNP (A1188G) was found in intron 2.
EXTERNAL LINKS
COMMENTS
https://omia.org/OMIA000201/9796/
YOUR FEEDBACK is welcome!