GEPHE SUMMARY Print
Gephebase Gene
Entry Status
Published
GepheID
GP00000854
Main curator
Martin
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
Drosophila melanogaster - DGRP lines
Trait State in Taxon B
Drosophila melanogaster - DGRP lines
Ancestral State
Data not curated
Taxonomic Status
Taxon A
Common Name
fruit fly
Synonyms
Sophophora melanogaster; fruit fly; Drosophila melanogaster Meigen, 1830; Sophophora melanogaster (Meigen, 1830); Drosophila melangaster
Rank
species
Lineage
Show more ... Brachycera; Muscomorpha; Eremoneura; Cyclorrhapha; Schizophora; Acalyptratae; Ephydroidea; Drosophilidae; Drosophilinae; Drosophilini; Drosophila; Sophophora; melanogaster group; melanogaster subgroup
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Common Name
fruit fly
Synonyms
Sophophora melanogaster; fruit fly; Drosophila melanogaster Meigen, 1830; Sophophora melanogaster (Meigen, 1830); Drosophila melangaster
Rank
species
Lineage
Show more ... Brachycera; Muscomorpha; Eremoneura; Cyclorrhapha; Schizophora; Acalyptratae; Ephydroidea; Drosophilidae; Drosophilinae; Drosophilini; Drosophila; Sophophora; melanogaster group; melanogaster subgroup
NCBI Taxonomy ID
is Taxon B an Infraspecies?
No
GENOTYPIC CHANGE
Generic Gene Name
pst
Synonyms
CG8588; Dm-65; Dmel\CG8588; Pst; Dmel_CG8588
String
-
Sequence Similarities
-
GO - Molecular Function
-
GO - Cellular Component
UniProtKB
Drosophila melanogaster
GenebankID or UniProtKB
Presumptive Null
Molecular Type
Aberration Type
Molecular Details of the Mutation
unknown
Experimental Evidence
Authors
Magwire MM; Fabian DK; Schweyen H; Cao C; Longdon B; Bayer F; Jiggins FM
Abstract
Variation in susceptibility to infectious disease often has a substantial genetic component in animal and plant populations. We have used genome-wide association studies (GWAS) in Drosophila melanogaster to identify the genetic basis of variation in susceptibility to viral infection. We found that there is substantially more genetic variation in susceptibility to two viruses that naturally infect D. melanogaster (DCV and DMelSV) than to two viruses isolated from other insects (FHV and DAffSV). Furthermore, this increased variation is caused by a small number of common polymorphisms that have a major effect on resistance and can individually explain up to 47% of the heritability in disease susceptibility. For two of these polymorphisms, it has previously been shown that they have been driven to a high frequency by natural selection. An advantage of GWAS in Drosophila is that the results can be confirmed experimentally. We verified that a gene called pastrel--which was previously not known to have an antiviral function--is associated with DCV-resistance by knocking down its expression by RNAi. Our data suggest that selection for resistance to infectious disease can increase genetic variation by increasing the frequency of major-effect alleles, and this has resulted in a simple genetic basis to variation in virus resistance.
Additional References
EXTERNAL LINKS
COMMENTS
RNAi functional evidence
YOUR FEEDBACK is welcome!