GEPHE SUMMARY Print
Gephebase Gene
Entry Status
Published
GepheID
GP00001712
Main curator
Noor
PHENOTYPIC CHANGE
Trait Category
Trait State in Taxon A
Saccharomyces cerevisiae
Trait State in Taxon B
Saccharomyces cerevisiae
Ancestral State
Taxon A
Taxonomic Status
Taxon A
Common Name
baker's yeast
Synonyms
Saccharomyces capensis; Saccharomyces italicus; Saccharomyces oviformis; Saccharomyces uvarum var. melibiosus; baker's yeast; S. cerevisiae; brewer's yeast; ATCC 18824; ATCC:18824; CBS 1171; CBS:1171; NRRL Y-12632; NRRL:Y:12632; Saccaromyces cerevisiae; Saccharomyce cerevisiae; Saccharomyes cerevisiae; Sccharomyces cerevisiae
Rank
species
Lineage
cellular organisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Saccharomyces
NCBI Taxonomy ID
is Taxon A an Infraspecies?
No
Taxon B
Common Name
baker's yeast
Synonyms
Saccharomyces capensis; Saccharomyces italicus; Saccharomyces oviformis; Saccharomyces uvarum var. melibiosus; baker's yeast; S. cerevisiae; brewer's yeast; ATCC 18824; ATCC:18824; CBS 1171; CBS:1171; NRRL Y-12632; NRRL:Y:12632; Saccaromyces cerevisiae; Saccharomyce cerevisiae; Saccharomyes cerevisiae; Sccharomyces cerevisiae
Rank
species
Lineage
cellular organisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Saccharomyces
NCBI Taxonomy ID
is Taxon B an Infraspecies?
No
GENOTYPIC CHANGE
Presumptive Null
No
Molecular Type
Aberration Type
SNP
SNP Coding Change
Nonsynonymous
Molecular Details of the Mutation
Trp253Leu (G>T at position 893332 according to Table 1)
Experimental Evidence
Taxon A Taxon B Position
Codon TGG TTG 893332
Amino-acid Trp Leu 253
Authors
Kao KC; Sherlock G
Abstract
The classical model of adaptive evolution in an asexual population postulates that each adaptive clone is derived from the one preceding it. However, experimental evidence has suggested more complex dynamics, with theory predicting the fixation probability of a beneficial mutation as dependent on the mutation rate, population size and the mutation's selection coefficient. Clonal interference has been demonstrated in viruses and bacteria but not in a eukaryote, and a detailed molecular characterization is lacking. Here we use three different fluorescent markers to visualize the dynamics of asexually evolving yeast populations. For each adaptive clone within one of our evolving populations, we identified the underlying mutations, monitored their population frequencies and used microarrays to characterize changes in the transcriptome. These results represent the most detailed molecular characterization of experimental evolution to date and provide direct experimental evidence supporting both the clonal interference and the multiple mutation models.
RELATED GEPHE
Related Haplotypes
No matches found.
EXTERNAL LINKS
COMMENTS
YOUR FEEDBACK is welcome!